使用 Redis 统计网站 UV 的方法

前言

网站 UV 就是指网站的独立用户访问量Unique Visitor,即相同用户的多次访问需要去重。

思路

提到 UV 去重,猜大家都会想到Set集合类。

  • 使用Set集合是一个不错的办法,Set里面存储用户的id。每一个用户访问页面的时候,我们直接把id存入Set,最终获取Setsize即可。问题就是Set的容量需要设置多大呢?如果应用是分布式的,是否需要合并操作?第一个问题其实可以通过计算来估计,如果用户量上亿的话,存储空间也是需要非常大的;第二个问题其实可以通过 Redis、DB 等存储,如 Redis 的Set结构,DB 的唯一键。
  • 我们上面提到的 DB 也是一种解决方案,不过写入量很大时,数据库压力会比较大。用户如果很多,则row也相应的多,且可能需要对每天的数据进行分表。在用户访问量小的情况下,可以采用该处理方式。

上面两种方式虽然可以实现统计网站 UV 的功能,但是一个比较占用内存,一个比较占用数据库资源。那我们该如何规避这两个问题呢?在这里,我们就介绍另外一种实现方法,即使用 Redis 里面的HyperLogLog结构,且仅占用12k的空间。

HyperLogLog

HyperLogLog的使用比较简单,实现略复杂。我们先看一下如何利用HyperLogLog来进行页面 UV 的统计。

使用 Redis 命令操作

# 添加元素
127.0.0.1:6379> pfadd user zhangsan lisi wangwu
# 添加成功返回1,添加失败返回0
(integer) 1
# 统计数量
127.0.0.1:6379> pfcount user
# 返回现在数量
(integer) 3
# 再生成一个pfkey
127.0.0.1:6379> pfadd user2 zhangsan2 lisi2 wangwu
(integer) 1
127.0.0.1:6379> pfcount user2
(integer) 3
# pfmerge会将后面pfkey中的值合并到前面的pfkey中
127.0.0.1:6379> pfmerge user2 user
OK
# 查看merge后的user2
127.0.0.1:6379> pfcount user2
(integer) 5

使用 Java 代码操作

import org.springframework.data.redis.core.HyperLogLogOperations;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;

import javax.annotation.Resource;

@Service
public class RedisService {

    @Resource
    private RedisTemplate<String, String> redisTemplate;

    /**
     * 记录用户访问
     *
     * @param user
     */
    public long statistic(String Key, String user) {
        HyperLogLogOperations<String, String> hyperLogLog = redisTemplate.opsForHyperLogLog();
        return hyperLogLog.add(Key, user);
    }

    /**
     * 统计当前 UV
     *
     * @return
     */
    public long size(String Key) {
        HyperLogLogOperations<String, String> hyperLogLog = redisTemplate.opsForHyperLogLog();
        return hyperLogLog.size(Key);
    }

    /**
     * 删除当前 key
     */
    public void clear(String Key) {
        HyperLogLogOperations<String, String> hyperLogLog = redisTemplate.opsForHyperLogLog();
        hyperLogLog.delete(Key);
    }
}

HyperLogLog 实现原理及特点

  • 原理:其实这是个概率问题。举个 Java 的例子,我们每次将一个字符串放入HyperLogLog,其实是把字符串转换成了一个值,可以把它当成hash值,将这个值转换成 2 进制,从后向前看第一个 1 出现的位置。那么 1 出现在第三个位置的时候(xxxx x100),概率是多少呢?(1/2)^3=1/8,也就是大概有八个数字进到这个数据结构时,第一个 1 曾出现在第三个的位置的可能会比较大,所以我们只需要维护一个 1 出现位置的最大值(暂且称之为max position),我们就可以知道整个HyperLogLog数量是多少了。
  • 去重:我们上面讲到hash值,其实整个算法就是将一个固定的value固定的映射成一个数字就可以解决重复的问题了。如zhangsan对应8,那么max position=4,再来一个zhangsan,还是对应8,则max position不变。
  • 特点:因为是概率问题,总会出现不准确的情况,所以你在使用HyperLogLog时,可以将user数量设置大一些,如 100W。但是其结果,有可能你看到的是不到 100W,也有可能计算出来的 UV 还比 100W 大。

使用 Java 实现 HyperLogLog

public class HyperLogLogSelf {

    static class BitKeeper {
        private int maxBits;

        public void random() {
            // 这里的随机数可以当成一个对象的hashCode。long value = new Object().hashCode() ^ (2 << 32);
            long value = ThreadLocalRandom.current().nextLong(2L << 32);
            int bits = lowZeros(value);
            if (bits > this.maxBits) {
                this.maxBits = bits;
            }
        }

        /**
         * 低位有多少个连续0
         * 思路上 ≈ 倒数第一个1的位置
         *
         * @param value
         * @return
         */
        private int lowZeros(long value) {
            int i = 1;
            for (; i < 32; i++) {
                if (value >> i << i != value) {
                    break;
                }
            }
            return i - 1;
        }
    }

    static class Experiment {
        private int n;
        private BitKeeper keeper;

        public Experiment(int n) {
            this.n = n;
            this.keeper = new BitKeeper();
        }

        public void work() {
            for (int i = 0; i < n; i++) {
                this.keeper.random();
            }
        }

        public void debug() {
            double v = Math.log(this.n) / Math.log(2);
            System.out.printf("%d %.2f %d\n", this.n, v, this.keeper.maxBits);
        }
    }

    public static void main(String[] args) {
        for (int i = 10000; i < 1000000; i += 10000) {
            Experiment exp = new Experiment(i);
            exp.work();
            exp.debug();
        }
    }
}

如上述代码所示,如果只有一个BitKeeper,那么精度很难控制,BitKeeper越多,则越精确,所以 Redis 在设置HyperLogLog的时候,设置了16384个桶,也就是2^14,每个桶的maxbits需要 6 个bit来存储,最大可以表示maxbits=63,于是总共占用内存就是2^14 * 6 / 8 = 12k字节。

小结

我们从应用场景开始,讲述了HyperLogLog的使用方法和实现原理,还给出了HyperLogLog的 Java 简单实现。

最后,我们在使用HyperLogLog的时候,需要注意:

  • HyperLogLog需要占用12k内存的(数据量大的时候),所以HyperLogLog不适合单独存储一个user相关的信息;
  • HyperLogLog是有一定精度损失的,可能比真实数量多,也可能比真实数量少,但基本上都在n‰(0<n<10)以内。
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值